给大家分享一对九零后小夫妻的新房,去年已经开始装修了,今年才刚幸福搬进来入住,其实也是作为他们的婚房,同样是九零后,说实在话的,我很幸福他们两口子。室内装修还是蛮不错的,一进入户玄关就可…
2025/6/15 19:39:30 人评论 次浏览这一段时间一直在看关于算法部分的书籍,所以始终没来的及更新自己的博客。之前就已经看完了Spring MVC的全部文章,今天就更新完我的关于Spring源码学习的最后一篇文章。 1.大体流程 上次说到了关于handler(也就是Controller层对象的获取),那…
2025/6/18 18:57:27 人评论 次浏览在 CSS 样式定义中,以下哪种 RGB 颜色值是 Web 安全色?A]#111111B]#222222C]#333333D]#444444答案:http://hovertree.com/tiku/bjaf/72jaf1n0.htm解析:http://hovertree.com/h/bjaf/0i85qaml.htm以下哪个段落显示时不会出现大写字…
2025/6/13 22:16:23 人评论 次浏览Houdini VEX语言快速入门教程MIXTRAINING-PATREON Houdini Nature of Vex自从Houdini引入VEX语言以来,它一直在不断发展,最近它已经成为FX TDs,Houdini Artists以及其他寻求使用Houdini定制工具的人的工具带的重要组成部分。在这个10部分Houd…
2025/6/21 13:44:31 人评论 次浏览一、概述:(zset) Sorted-Sets和Sets类型极为相似,它们都是字符串的集合,都不允许重复的成员出现在一个Set中。它们之间的主要差别是Sorted-Sets中的每一个成员都会有一个分数(score)与之关联,Redis正是通过分数来为集合中的成员进…
2025/6/22 23:18:59 人评论 次浏览架构师不仅拿钱多,还受到程序员的崇拜、妹子的仰慕。他们走路带风、出场自带BGM,吹啊吹,我的骄傲放纵。唯一的缺点,就是费头发。架构师虽好,却不是人人都能当的,除了聪明绝顶,还要有扎实的技术功…
2025/6/22 20:32:18 人评论 次浏览设计一个函数时需要从哪几个方面去思考呢? 函数名:一个通俗易懂的名字可以让别人立刻知道这个函数的功能是什么? 参数的数量 : 往往跟函数的功能挂钩 参数的类型: C基本数据类型和Window下的宏类型和STL容器类。 返回值: A.返回值…
2025/6/22 17:45:36 人评论 次浏览java中线程机制,一开始我们都用的单线程。现在接触到多线程了。 多线性首先要解决的问题是:创建线程,怎么创建线程的问题; 1、线程的创建: 四种常用的实现方法 1.继承Thread。 Thread是java.lang包下面的,所…
2025/6/22 14:58:55 人评论 次浏览2019独角兽企业重金招聘Python工程师标准>>> Mysql默认安装后,如果是小型项目基本不用更改什么配置,如果是中大型项目,那么需要一些基本的优化,以达到性能最大化。 以下都是针对my.ini配置文件的修改,是我工…
2025/6/22 9:25:33 人评论 次浏览1、物理机与虚拟机的区别 虚拟机是一个相对于物理机的概念。两种机器都有代码执行能力,区别是物理机的执行引擎是直接建立在处理器,硬件、指令集和操作系统层面上的,而虚拟机的执行引擎是自己实现的,因此可以自行制定指令集与执行…
2025/6/22 6:38:52 人评论 次浏览转自:掌握Python对文件的读写,只需牢记三步在学习Python编程的过程中,难免会碰到到文件的读写操作,因为文件是永久保存,所以对程序中的数据来说,使用率还是非常高的。首先,就是要掌握该文件的句…
2025/2/9 17:08:10 人评论 次浏览1.本文介绍几种Python网页爬虫工具集? 2.Python文本处理工具包有哪些? 3.“Milk是Python的一个机器学习工具箱,它有什么作用? 本图片纯属娱乐 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本…
2025/2/9 17:07:09 人评论 次浏览之前介绍过空气悬挂,有读者想了解更多的主动悬挂技术,今天就来说一说电磁悬挂。什么是电磁悬挂?电磁悬挂其实是一个很宽泛的概念,它是指一切基于电磁学原理的车辆悬挂,而不是仅仅指某一类的悬挂。电磁原理的电磁悬挂系…
2025/2/9 17:06:08 人评论 次浏览ssm分页(数据库使用的是oracle) oracle 补充知识 用doc命令登录oracle数据库的命令 -- 第一步 sqlplus /nolog -- 第二部 conn username/passwordip地址:端口号/服务名 -- 说明:一般情况下,服务名我们都是用orcl,在虚拟机上安装oracle -- 示例 conn shaoming/root192.168.…
2025/2/9 17:05:37 人评论 次浏览好不容易理解了信息熵的概念后,又发现还有其他各种熵,经常把人绕晕,比如决策树模型中要计算信息增益(其实就是互信息),最大熵模型中要计算条件熵,下面我们就来用5分钟理解下互信息,条…
2025/2/9 17:05:07 人评论 次浏览题意: 给出一个形如(P)/D的多项式,其中P是n的整系数多项式,D为整数。 问是否对于所有的正整数n,该多项式的值都是整数。 分析: 可以用数学归纳法证明,若P(n)是k次多项式,则P(n1) - P(n)为k-1次多…
2025/2/9 17:04:36 人评论 次浏览